一、基本情况
张冀,1988年6月出生,副教授,博士生导师,欧盟玛丽居里学者,英国 Research and Innovation(UKRI)postdoctoral fellow,湖南省海外高层次人才青年项目入选者。2016年至2020年期间,在在丹麦技术大学从事博士后研究工作。主要研究方向是电机及其系统高效热管理、先进储能技术开发及应用;成果发表SCI高水平学术论文30余篇;获北京市科学技术一等奖1项。
联系邮箱:[email protected]
常年招收硕士、博士和博士后,欢迎各位学生提前联系、咨询、报考!
二、研究方向
1. 电机本体新型热管理装置的设计与优化
2. 电力电子系统及其器件的高效散热技术
3. 卡诺电池新型储能系统的优化与应用
三、主持的主要科研项目
1. 国家自然科学基金面上项目,52377047,2024.01-2027.12。
2. 国家重点研发计划项目子课题,2022YFB4201500,2022.12-2026.05。
3. 国家重点研发计划项目子课题,2022YFF0608701,2022.10-2026.03。
4. 国家重点研发计划政府间国际合作项目课题,2022YFE0118500,2023.01-2025.12。
5. 长沙市自然科学基金,kq2202159,2022.01-2023.12。
主持国家电网、湘电股份、哈电风能等多项企业委托项目。
四、代表性论文
[1] B. Xia, S. Huang, J. Zhang*, W. Zhang, W. Liao, J. Gao, X. Wu. An Improved High-Frequency Voltage Signal Injection-based Sensorless Control of IPMSM Drives With Current Observer, IEEE T. TRANSP. ELECTR. (2023).
[2] J. Zhang, X. Hu, D. Wu, X Huang*, X. Wang b, Y. Yang, C Wen, A comparative study on design and performance evaluation of Organic Rankine Cycle (ORC) under different two-phase heat transfer correlations, Appl. Energy 350 (2023) 121724.
[3] J. Zhang, Z. Cao, S. Huang, X. Huang, Y. Han, C. Wen, J. H. Walther, Y. Yang, Solidification performance improvement of phase change materials for latent heat thermal energy storage using novel branch-structured fins and nanoparticles, Appl. Energy 342 (2023) 121158.
[4] X. Huang, J. Zhang*, F. Haglind, Experimental analysis of high temperature flow boiling of zeotropic mixture R134a/R245fa in a plate heat exchanger, Appl. Therm. Eng. 220 (2023) 119652.
[5] J. Zhang, T. Zhu. Systematic review of solar air collector technologies: Performance evaluation, structure design and application analysis, Sustain. Energy Technol. Assess. 54 (2022) 102885.
[6] J. Zhang, Z. Cao, S. Huang, X. Huang, K. Liang, Y. Yang, H. Zhang, M. Tian, M. Akrami, C. Wen, Improving the melting performance of phase change materials using novel fins and nanoparticles in tubular energy storage systems, Appl. Energy 322 (2022) 119416.
[7] X. Huang, J. Zhang*, F. Haglind, Experimental analysis of hydrofluoroolefin zeotropic mixture R1234ze(E)/R1233zd(E) condensation in a plate heat exchanger, Int. Commun. Heat Mass 135 (2022) 106073.
[8] X. Huang, J. Zhang*, F. Haglind, Experimental analysis of condensation of zeotropic mixtures from 70°C to 90°C in a plate heat exchanger, Int. J. Refrig. Available online 29 January 2022, 137 (2022) 166–177.
[9] J. Zhang*, F. Haglind, Experimental analysis of high temperature flow boiling heat transfer and pressure drop in a plate heat exchanger, Appl. Therm. Eng. 196 (2021) 117269.
[10] J. Zhang*, B. Elmegaard, F. Haglind, Condensation heat transfer and pressure drop characteristics of zeotropic mixtures of R134a/R245fa in plate heat exchangers, Int. J. Heat Mass Transf. 164 (2021) 120577.
[11] J. Zhang*, B. Elmegaard, F. Haglind, Condensation heat transfer and pressure drop correlations in plate heat exchangers for heat pump and organic Rankine cycle systems, Appl. Therm. Eng. 183 (2021) 116231.
[12] T. Zhu, J. Zhang*, A numerical study on performance optimization of a micro-heat pipe arrays-based solar air heater, Energy. 215 (2021) 119047.
[13] J. Zhang*, M.E. Mondejar, F. Haglind, General heat transfer correlations for flow boiling of zeotropic mixtures in horizontal plain tubes, Appl. Therm. Eng. 150 (2019) 824–839.
[14] J. Zhang*, M.R. Kærn, T. Ommen, B. Elmegaard, F. Haglind, Condensation heat transfer and pressure drop characteristics of R134a, R1234ze(E), R245fa and R1233zd(E) in a plate heat exchanger, Int. J. Heat Mass Transf. 128 (2019) 136–149.
[15] J. Zhang, X. Zhu, M.E. Mondejar, F. Haglind, A review of heat transfer enhancement techniques in plate heat exchangers, Renew. Sustain. Energy Rev. 101 (2019) 305–328.
[16] J. Zhang*, A. Desideri, M.R. Kærn, T.S. Ommen, J. Wronski, F. Haglind, Flow boiling heat transfer and pressure drop characteristics of R134a, R1234yf and R1234ze in a plate heat exchanger for organic Rankine cycle units, Int. J. Heat Mass Transf. 108 (2017) 1787–1801.
[17] J. Zhang, Y. Diao, Y. Zhao, Y. Zhang, An experimental investigation of heat transfer enhancement in minichannel: Combination of nanofluid and micro fin structure techniques, Exp. Therm. Fluid Sci. 81 (2017) 21–32.
[18] J. Zhang, Y. Diao, Y. Zhao, Y. Zhang, Thermal-hydraulic performance of SiC-Water and Al2O3-water nanofluids in the minichannel, ASME J. Heat Transfer. 138 (2016) 1–9.
[19] J. Zhang, Y. Zhao, Y. Diao, Y. Zhang, An experimental study on fluid flow and heat transfer in a multiport minichannel flat tube with micro-fin structures, Int. J. Heat Mass Transf. 84 (2015) 511–520.
[20] J. Zhang, Y. Diao, Y. Zhao, Y. Zhang, Experimental study of TiO2-water nanofluid flow and heat transfer characteristics in a multiport minichannel flat tube, Int. J. Heat Mass Transf. 79 (2014) 628–638.
[21] J. Zhang, Y.H. Diao, Y.H. Zhao, Y.N. Zhang, An experimental study of the characteristics of fluid flow and heat transfer in the multiport microchannel flat tube, Appl. Therm. Eng. 65 (2014) 209–218.
[22] J. Zhang, Y. Diao, Y. Zhao, Y. Zhang, Q. Sun, Thermal-hydraulic performance of multiport microchannel flat tube with a sawtooth fin structure, Int. J. Therm. Sci. 84 (2014) 175–183.
[23] J. Zhang, Y.H. Diao, Y.H. Zhao, X. Tang, W.J. Yu, S. Wang, Experimental study on the heat recovery characteristics of a new-type flat micro-heat pipe array heat exchanger using nanofluid, Energy Convers. Manag. 75 (2013) 609–616.